13. Übungsblatt zur Vorlesung Einführung in die Elementarteilchentheorie Abgabe: bis Montag, den 30. Januar 2017 12:00 Uhr

WS 2016/2017 Prof. G. Hiller

Aufgabe 1: Spontane Symmetriebrechung

(5 Punkte)

Die folgende Lagrangedichte beschreibt eine skalare Theorie mit einer globalen O(3)-Symmetrie, unter der das Feld $\phi = (\phi_1, \phi_2, \phi_3)$ wie ein Vektor transformiert:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\nu} \phi_i \right)^2 - \frac{1}{2} \mu^2 \phi_i^2 - \frac{1}{4} \lambda \left(\phi_i^2 \right)^2 \quad i = 1, 2, 3. \text{ (Summenkonvention)}$$
 (1)

Hierbei seien μ^2 < 0 und λ > 0.

- (a) Brechen Sie die Symmetrie hinunter zu einer O(2), indem Sie einen geeigneten Vakuumerwartungswert $\langle \phi \rangle$ finden und zeigen Sie, dass ein massives Teilchen und zwei masselose Goldstone-Bosonen entstehen. Geben Sie die Masse des Teilchens in Abhängigkeit von den Parametern des Potentials an.
- (b) Beschreiben Sie die möglichen Wechselwirkungen der Teilchen in der (spontan) gebrochenen Theorie, indem Sie die Vertizes skizzieren.

Aufgabe 2: GSW–Theorie: $SU(2) \times U(1)$

(8 Punkte)

Die Elemente der Eichgruppe $SU(2) \times U(1)$ haben die Form

$$U(x) = \exp\left[i\alpha^{a}(x) t^{a}\right] \exp\left[i\frac{\beta(x)}{2}\right],$$
 (2)

wobei die Generatoren der SU(2) durch die Pauli-Matrizen $\sigma^a=2t^a$ gegeben sind. Es gilt die Einsteinsche Summenkonvention. Die Eichsymmetrie der GSW-Theorie soll nun spontan gebrochen werden, indem für ein skalares Dublettfeld ϕ der Grundzustand

$$\phi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \nu \end{pmatrix} \tag{3}$$

gewählt wird.

(a) Zeigen Sie, dass die Eichtransformation

$$U(x) = \exp\left[i\alpha^{3}(x)t^{3}\right] \exp\left[i\frac{\beta(x)}{2}\right]$$
(4)

für bestimmte Phasen $\alpha^3(x)$ und $\beta(x)$ den Grundzustand invariant lässt. Welche Relation muss in diesem Fall zwischen den beiden Phasen gelten?

Die kovariante Ableitung der GSW-Theorie besitzt die Form

$$D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}t^{a} - ig'YB_{\mu}. \tag{5}$$

Die Felder A^a_μ und B_μ sind jeweils die Eichfelder der SU(2) und U(1). Die zugehörigen Masseneigenzustände lauten:

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(A_{\mu}^{1} \mp i A_{\mu}^{2} \right), \tag{6}$$

$$Z^{0} = \frac{1}{\sqrt{g^{2} + {g'}^{2}}} \left(g' A_{\mu}^{3} - g B_{\mu} \right), \tag{7}$$

$$A_{\mu} = \frac{1}{\sqrt{g^2 + {g'}^2}} \left(g' A_{\mu}^3 + g B_{\mu} \right). \tag{8}$$

(b) Zeigen Sie, dass die Massen der Felder W^{\pm}, Z_{μ}^{0} und A_{μ} durch

$$M_W = g \frac{v}{2}, \quad M_Z = \sqrt{g^2 + {g'}^2} \sqrt{v^2} \quad \text{und} \quad M_A = 0$$
 (9)

gegeben sind.

(c) Der schwache Mischungswinkel θ_w verknüpft die Kopplungen g und g':

$$\cos \theta_w = \frac{g}{\sqrt{g^2 + {g'}^2}}, \qquad \sin \theta_w = \frac{g'}{\sqrt{g^2 + {g'}^2}}.$$
(10)

Zeigen Sie, dass gilt

$$\begin{pmatrix} Z \\ A \end{pmatrix} = \begin{pmatrix} \cos \theta_w & -\sin \theta_w \\ \sin \theta_w & \cos \theta_w \end{pmatrix} \begin{pmatrix} A^3 \\ B \end{pmatrix}.$$
 (11)

- (d) Wie würden Sie den schwachen Mischungswinkel θ_w messen?
- (e) Erklären Sie, wie die Quark-Massen $SU(2) \times U(1)$ die Eichstruktur brechen.
- (f) Wie groß ist die Yukawa-Kopplung des Top-Quarks?

Aufgabe 3: Minimum des skalaren Potentials und skalare Massen (7 Punkte) Gegeben sei ein System zweier reeller, skalarer Felder ϕ_1 und ϕ_2 mit der Lagrangedichte

$$\mathcal{L} = \frac{1}{2} \sum_{i=1,2} (\partial_{\mu} \phi_i) (\partial^{\mu} \phi_i) - V(\phi_1, \phi_2)$$
 (12)

sowie dem Potential

$$V(\phi_1, \phi_2) = \frac{1}{2}\mu_1^2\phi_1^2 + \frac{1}{2}\mu_2^2\phi_2^2 - b\phi_1\phi_2 + \frac{g^2}{8}(\phi_2^2 - \phi_1^2)^2, \tag{13}$$

wobei μ_1^2, μ_2^2, b und g reelle Parameter seien, und b > 0. (Dieses System ist dem Higgssektor des minimalen supersymmetrischen Standardmodell, dem MSSM, entlehnt.)

- (a) Welche Symmetrien hat das Potential V für b = 0 und $b \neq 0$?
- (b) Diskutieren Sie das Potential *V*: Zeigen Sie, dass für spontane Symmetriebrechung gelten muss

$$b^2 > \mu_1^2 \mu_2^2 \tag{14}$$

 $(\phi_1 = \phi_2 = 0 \text{ soll keine stabile Lösung sein})$ und

$$2b < \mu_1^2 + \mu_2^2. \tag{15}$$

Auch für $|\phi_1| = |\phi_2|$ soll das Potential von unten beschränkt sein, also V > 0 für $|\phi_1|, |\phi_2| \to \infty$.

- (c) Minimieren Sie das Potential V und geben Sie die Gleichungen für die Vakuumerwartungswerte v_1 und v_2 von ϕ_1 und ϕ_2 am Minimum, ausgedrückt durch $v_1 = v \cos \beta$ und $v_2 = v \sin \beta$, an. Die explizite Lösung dieser Gleichung ist nicht Gegenstand dieser Aufgabe.
- (d) Schreiben Sie die Lagrangedichte nach spontaner Symmetriebrechung, d.h., $\phi_1 = v_1 + h_1$, $\phi_2 = v_2 + h_2$ und nehmen Sie Terme einschließlich 2. Ordnung in den Higgsfeldern h_1 und h_2 , also h_1^2 , h_2^2 und h_1 , h_2 , mit. Dieses sind die Massenterme, welche in Matrixform

$$\mathcal{L}_{\text{Masse}} = -\frac{1}{2} (h_1, h_2) M^2 \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$
 (16)

lauten. Bestimmen Sie die Massenmatrix M^2 und anschließend durch Diagonalisierung von M^2 die Masseneigenzustände H_1 und H_2 , sowie deren Massen M_1 und M_2 .

Vorlesungsseite im Internet:

http://people.het.physik.tu-dortmund.de/~ghiller/WS1617ETT.html