Gudrun Hiller Dortmund U. DPG-Tagung, Dortmund, March 31, 2006

- (quark)-flavor within SM and beyond: CKM and more
- rare processes: *b*-decays and mixing

CKM and CP \rightarrow Klaus Schubert

rare decays \rightarrow Manfred Paulini

 B_s -mixing \rightarrow Stephanie Menzemer

and many more in BSM, heavy quarks, rare decays sessions !

- CP violation needed for baryogenesis $(n \bar{n})/s \simeq 10^{-10}$ SM not sufficient
- strong CP problem: Why is $\bar{\Theta} \lesssim 10^{-10}$ and $\delta_{CKM} = \mathcal{O}(1)$?
- origin of flavor; explanation of peculiar masses and mixings
- neutrino masses

... are core questions of the SM, plus: unification, Higgs mass, dark matter, dark energy, gravity

despite its impressive experimental support the SM is rather viewed as an effective theory valid up to $\Lambda \sim O(m_W)$

The high energy frontier

flavor and CP in SM: $-\mathcal{L}_Y = \bar{Q}Y_u h^C U + \bar{Q}Y_d h D + \bar{L}Y_e h E + h.c.$ flavor symmetry: $U(3)^5 \xrightarrow{Y} U(1)_B \times U(1)_L \times U(1)_Y$

quarks: $Y_{u,d}$ 36 real numbers \rightarrow 10 physical parameters: 6 quark masses plus CKM (3 angles, 1 phase)

- determine 10 parameters
- how do the Yukawas look like ? top-down, GUT's, textures, ED's, Froggatt-Nielsen, horizontal symmetries, anarchy, ..
- test the CKM-picture of flavor/CP violation, that is, MFV minimal flavor violation = no further breaking of flavor than through Yukawas
- are there deviations from the SM in rare processes ?

CKM 2005: unitarity triangle from tree level, precision

loop input to full fit: meson mixing, $\sin 2\beta (\bar{c}c)_{data-ave} = 0.687 \pm 0.032$

SM/MFV-like picture at least for $b \rightarrow \bar{c}cs$, K-, B_d -mixing

CKM=precision input within MFV $\epsilon(\alpha)=6\%, \epsilon(\beta)=4\%, \epsilon(\gamma)=10\%$

SM tests with indirect processes

no competition from large SM tree contributions

<u>FCNC</u>: sensitivity to SM, NP phases φ , flavor-breaking couplings δ

BSM contributions to FCNC can offset rates, distort spectra, induce CP-asymmetries, V+A currents

models of EWKSB with NP @ TeV

Fig from hep-ph/0207121

reach in indirect signals rare b, c, K, τ -decays, mixing, EDMs, g-2 depends on beyond the SM flavor/CP violation (minimal=CKM ?), large parameters e.g. tan β and theor. and exp. uncertainties

- searching for BSM CP-violation in $b \rightarrow s$ penguins
- todays and future impact of $b \rightarrow s\ell\ell$ modes
- $B_s \bar{B}_s$ mixing

Time-dependent CP asymmetries in $b \rightarrow s\bar{q}q$ **decays**

SM background $\mathcal{O}(\lambda^2) \sim 0.04$, # non-universal, hadronic physics

since Moriond05:~ 1σ shifts in $\bar{c}c$, Φ , larger ones K_S^3 , f_0 ; η' off by 2.3σ better agreement between Belle and BaBar; new 2006: ρK_S (BaBar)

 $\Delta S = -\eta_f S_f - \sin 2\beta$

hep-ph/0505075, 0503151 hep-ph/9708305, 0310020, 0303171, 0403287

f	ΔS_{SM}^{QCDF} @ NLO	ΔS^{QCDF}_{SM} @LO	$ \Delta S_{SM}^{SU(3)+} $	S_f LP'05	C_f LP'05
ΦK^0	$0.01 \dots 0.03$	0.02	$\stackrel{<}{_\sim} 0.3$	0.47 ± 0.19	-0.09 ± 0.14
$\eta' K^0$	$0 \dots 0.02$	$-0.01\dots 0.02$	$\stackrel{<}{_\sim} 0.15$	0.48 ± 0.09	-0.08 ± 0.07
$\pi^0 K_S$	$0.03 \dots 0.12$	$0.03 \dots 0.10$	$\stackrel{<}{_\sim} 0.2$	0.31 ± 0.26	-0.02 ± 0.13
ωK_S	$0.05 \dots 0.22$	$0.05 \dots 0.25$	—	0.63 ± 0.30	-0.44 ± 0.23

LO captures central value and uncertainty of full NLO calc. of ΔS_f

for all above modes: QCD factorization predicts $\Delta S_f > 0$, experimental shifts < 0; no significant $C_f \neq 0$

ultimately more precision needed; all exp. errors $\lesssim 0.1$ only by time of super-*b*-factory hep-ph/0503261; ηK_S data missing

dipole operators $O_7 \propto \bar{s}_L \sigma_{\mu\nu} b_R F^{\mu\nu}$ $O_8 \propto \bar{s}_L \sigma_{\mu\nu} b_R G^{\mu\nu}$ 4-Fermi operators $O_9 \propto (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$ $O_{10} \propto (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$

NP in Wilson coefficients $C_i = C_i^{SM} + C_i^{NP}$ or new operators

model-independent analysis: Br's, $A_{CP}, A_{FB} = f(C_i) \rightarrow fit!$ hep-ph/9408213

Constraints from $b \rightarrow s\gamma$ branching ratio

 $\mathcal{B}(b \to s\gamma)_{LO} \sim |C_7(m_b)|^2 \quad \text{at NLO } R \equiv \frac{C^{SM} + C^{NP}}{C^{SM}} \text{ hep-ph/0112300}$ $R_8 - R_7:$

-10

theory errors renorm. scale and charm mass solid:pole, dashed:MS scatter points: MSSM with MFV: $C_7 = \underbrace{C_7^{SM} + C_7^{H^{\pm}}}_{=0} + C_7^{\chi^{\pm}}$

-2 R (M) 0

-4

 $C_7^{\chi^{\pm}} \propto \mu A_t \tan \beta f(m_{\tilde{t}_i}, m_{\tilde{\chi}_j}) m_b / (v(1 + \epsilon \tan \beta)); \epsilon \propto (\alpha_s / \pi) \mu m_{\tilde{g}} \tan \beta$ beyond MFV: gluino loops with down squark-mixing δ_{23}^D e.g. hep-ph/0212397

Combined $b \rightarrow s\ell^+\ell^-$ and $b \rightarrow s\gamma$ data

$$\begin{aligned} \frac{d\Gamma(B \to X_s \ell^+ \ell^-)}{d\hat{s}} &= \left(\frac{\alpha}{4\pi}\right)^2 \frac{G_F^2 m_b^5 \left|V_{ts}^* V_{tb}\right|^2}{48\pi^3} (1-\hat{s})^2 \left[(1+2\hat{s}) \left(\left|\frac{C_9^{\text{eff}}}{9}\right|^2 + \left|\frac{C_{10}^{\text{eff}}}{10}\right|^2\right) f_1 \right. \\ &+ \left. 4 \left(1+2/\hat{s}\right) \left|\frac{C_7^{\text{eff}}}{7}\right|^2 f_2 + 12 \text{Re} \left(\frac{C_7^{\text{eff}} C_9^{\text{eff}*}}{9}\right) f_3 + f_c \right] \quad f_i: 1/m_{c,b}^2 \text{ corr.} \end{aligned}$$

non-SM sign $C_7^{\text{eff}} > 0$ disfavored iff no BSM ops hep-ph/0410155, 0505110(C10-C7study)

MSSM+MFV: C_9, C_{10} near SM, not $\tan \beta$ enhanced hep-ph/0112300 neutral Higgs effects $O_{S(P)}^f \sim \overline{s}_L b_R \overline{f}(\gamma_5) f$, $\tan \beta$ enhanced check for BSM operators *i* (pseudo)scalar *ii* $L \leftrightarrow R$ flipped O'_i *iii* ...

Gudrun Hiller

NP sensitivity of $b \rightarrow s\ell^+\ell^-$ spectra, perspectives

 A_{FB} : # forward - # backward ℓ^+ in dilepton CMS w.r.t. \overline{B} (CP-odd)

 $A_{FB}(\hat{s}) \sim \operatorname{Re}\left[C_{10}^{*}(C_{7}^{\operatorname{eff}} + \beta(\hat{s})C_{9}^{\operatorname{eff}})\right]$ also $B \to K^{*}\ell^{+}\ell^{-}$ Belle 0508009,0603018

shape sensitive to sign C_7 ; $A_{FB} \propto C_{10}$; flat possible $\underline{\text{zero}} X_S$: $\hat{s}_{SM}^{NNLL} = 0.162 \pm 0.002(8)$ hep-ph/0208088,0209006 K^* : $s_{SM}^{NLO} = 4.4 \pm 0.4 \text{ GeV}^2$ hep-ph/0106067

 $\underline{CP} A_{FB}^{CP} \equiv \frac{A_{FB} + A_{FB}}{A_{FB} - \overline{A}_{FB}} \sim \arg C_{10} \arg C_9^{\text{eff}} ; A_{FB}^{CP}|_{SM} \lesssim 10^{-3} \text{ hep-ph/0006136}$ full angular analysis $B \to K^* (\to K\pi) \ell^+ \ell^-$ hep-ph/9907386

 $d\Gamma^4 \sim I(s, \Theta_l, \Theta_{K^*}, \Phi) ds d \cos \Theta_l d \cos \Theta_{K^*} d\Phi$

More model-independent studies, neutral Higgses

Higgses split between $\mu^+\mu^-$ and e^+e^- in $b \to s\ell^+\ell^$ ratios with <u>SAME</u> cut on dilepton mass hep-ph/0310219

 R_K constrains $C_{S,P} + C'_{S,P}$, $\mathcal{B}(B_s \to \mu^+ \mu^-)$ constrains $C_{S,P} - C'_{S,P}$ correlation breaks down if $C_{S,P} \not\sim m_\ell$ What if Δm_s is around its SM value?*

a theoretical exercise

*DØ: $17 < \Delta m_s < 21 \text{ ps}^{-1}$ at 90% C.L. hep-ex/0603029

$\Delta B = 2 \; {\rm FCNC} \; {\rm in} \; {\rm SM}$

SM: W - (u, c, t)-box $\Delta m_s^{SM} \sim (V_{tb}^* V_{ts})^2 \frac{g^4}{16\pi^2} \frac{(b\Gamma s)(b\Gamma' s)}{m_W^2}$ top dominated; $V_{tb} \simeq 1$, $V_{ts} = -A\lambda^2$ independent of CKM-triangle-fit

$$\begin{split} \Delta m_d^{world\,ave} &= 0.570 \pm 0.004\, ps^{-1} \text{ (HFAG '05)} \\ \Delta m_s^{\mathrm{SM}} &= 18.3^{+6.5}_{-1.5}\, ps^{-1} \text{ (CKMfitter/EPS'05)} \ \Delta m_s^{\mathrm{SM}} &= 20.0 \pm 1.8\, ps^{-1} \text{ (UTfit hep-ph/0501199)} \\ \text{assume in plots: } \Delta m_s^{\mathrm{SM}} &= \Delta m_s^{data} = 19.0 \pm 2\, ps^{-1} \text{ (@ 90 \% C.L.} \end{split}$$

generic NP constraints from lower bound

mixing with NP: $\Delta m_s = \Delta m_s^{\text{SM}} \cdot |1 + he^{2i\sigma}|$ see also hep-ph/0509117 for nicer plots only lower bound near SM $\Delta m_s > 16.6 \, ps^{-1}$ @ 95 % C.L. (HFAG '05) $\Delta m_s > \Delta m_s^{\text{SM}}(1 - \epsilon)$:

dotted: $\epsilon = 0.23$

gaps excluded around $h \simeq +1$, $\sigma \simeq \pi/2$ and $h \simeq -1$ with $\sigma \simeq 0, \pi$

size of NP-amplitude *h* unconstrained

 $\Delta m_s = \Delta m_s^{\text{SM}} \cdot \left| 1 + he^{2i\sigma} \right|; \text{ with } \Delta m_s \simeq \Delta m_s^{\text{SM}} (1 \pm \epsilon)$ $\Delta m_s^{data} = 19.0 \pm 2 \, ps^{-1} \text{ @ 90 \% C.L.}$

dotted: lower bound only, solid: $\epsilon = 0.15$, dashed (and h = 0): $\epsilon = 0$

size of NP-amplitude $|h| < 2 + \epsilon$ limited O(1) NP-amplitude possible if NP-phase σ cooperates

large |h| is fine-tuned to some degree for small errors $\epsilon \to 0$

I. low $\tan \beta$: CKM-ology: hep-ph/9903535, SUGRA: hep-ph/9908499 $h = h_{H^{\pm}} + h_{\chi^{\pm}}$; $\sigma = 0$ (no BSM CP-violation) h > 0 in whole parameter space h equal for B_d and B_s ok with $b \rightarrow s\gamma$, $m_{\chi} > 91$ GeV, all other charged SUSY-partners above 80 GeV: $0 < h \lesssim 0.75$; h decreases for heavy $m_{\tilde{t}}, m_{\tilde{\chi}}, m_{H^{\pm}}$ SUGRA: $h \lesssim 0.4$; calc. only valid up to moderate $\tan \beta$ (see next slide)

$B_s - \bar{B}_s$ mixing in MVF MSSM II

II. large $\tan \beta$: hep-ph/0210145 $h = \underbrace{h_{H^{\pm}}}_{<0} + \underbrace{h_{\chi^{\pm}}}_{>0} + \underbrace{h_{DP}}_{<0}, \sigma = 0$

h < 0 in most of the parameter space; $h(B_d) \neq h(B_s)$ due to DP

DP: <u>d</u>ouble <u>p</u>enguin from neutral Higgses: $DP(B_s) \propto m_s \tan \beta^4$ big! Δm_s correlated with $\mathcal{B}(B_s \to \mu^+ \mu^-) < 1.2 \cdot 10^{-7}$ hep-ph/0207241

lower bound on Δm_s predicts upper bound on $\mathcal{B}(B_s \to \mu^+ \mu^-)$

 $W = QY_uH_uU + QY_dH_dD + LY_eH_dE + \lambda H_dH_uN - \frac{1}{3}kN^3$ N:singlet at large tan β : naturally light pseudoscalar A_1^0 , radiatively stable

 A_1^0 masses as low as $\mathcal{O}(10 \text{MeV})$ viable hep-ph/0404220

iff very light and weakly coupled, A_1^0 becomes missing E $h^0 \rightarrow A^0 A^0$ very important for Higgs searches hep-ph/0005308

NMSSM at large tan β : $h = h_{MSSM}^{large \tan \beta} + h_{A_1^0}$; $h_{A_1^0} \propto \tan \beta^2 / m_{A_1^0}^2$ $h_{A_1^0}(B_d) = h_{A_1^0}(B_s)$

from Δm_d -measurement: $|h| \lesssim 0.4$

unlike MSSM, no correlation with $\mathcal{B}(B_s \to \mu^+ \mu^-)$ hep-ph/0404220

$B_s-\bar{B}_s$ in SUSY beyond MFV

large $\nu_{\mu} - \nu_{\tau}$ mixing in SO(10) GUT models implies large mixing between right handed $\tilde{s} - \tilde{b}$: $(\delta_{23}^D)_{RR}$ large and complex Figs from hep-ph/0212180

implications: Δm_s can be huge $\sim 100 \ ps^{-1}$ (range in right fig) but can be also SM-like (middle fig):

needs heavy superpartners $m_{Q2,Q3,D2} \sim 2 \text{TeV}$ or small couplings $(\delta_{23}^D)_{RR}$

(green: percent increase in $B(b \rightarrow s\gamma)$, blue: $S_{\Phi K_S}$)

- CKM@tree: input for SM tests and flavor model building thanks to tremendeous exp and th (loops, HQET, lattice, ..) efforts
- in 2005 $\sin 2\beta_{\text{penguin}}$ moved closer to MFV, some hints $\eta' K^0$
- b → sℓℓ modes under th and exp investigation; model independent analysis (w. b → sγ) → do e and μ separately long term goal: angular analysis in B → K*(→ Kπ)ℓℓ
- tool in peguin-physics: multi-observable analyses and fits
- $b \rightarrow d$ FCNCs beginning to be probed
- B_s, B_c, Λ_b -physics coming up CDF&D0; much more from LHC(b)

- an upper bound on $B_s \bar{B}_s$ mixing touches unknown territory IFF $\Delta m_s \simeq \Delta m_s^{\rm SM}$
- generically, O(1) NP allowed with some amount of fine-tuning and CP-phase; further constrains from $\Delta\Gamma$ and CP-asymmetries
- models with MFV, such as CMSSM can accommodate SM-like $B_s \bar{B}_s$ -mixing within errors $|h| < \epsilon$
- models beyond MFV are constrained by this significantly
- $|V_{td}/V_{ts}|_{treeUT}$ vs $|V_{td}/V_{ts}|$ from $\frac{\Delta m_d}{\Delta m_s} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \xi^{-2} \frac{m_{B_d}}{m_{B_s}}$: SM test !
- so far no significant conflict with SM/MFV; many FCNCs only weakly or just un-constrained V + A, τ^{\pm} , $\nu \bar{\nu}$, $b \rightarrow d$, B_s -physics

Some (further) SM tests with *b***-physics**

	experiment	SM	comments
$a_{CP}(b \to s\gamma)$	$0.4\pm3.6\%$	$0.42\pm0.17\%$ hep-ph/0312260	CPX in $bs\gamma,g$
$a_{CP}(b \to d/s\gamma)$	-0.110 ± 0.116 BaBar'05	10^{-9} hep-ph/0312260	test MFV
$S_{K_S\pi^0\gamma}$	0.00 ± 0.28 Belle/BaBar'05	$-2m_s/m_b$	V+A FCNCs
spin $\Lambda_b o \Lambda\gamma$	—	$\sim m_s/m_b$	V+A FCNCs
$\mathcal{B}(B \to X_s g)$	<9% CLEO'97	$5.0 \pm 1.0 \cdot 10^{-3}$	NP in bsg
TDCPA $b \rightarrow s\bar{s}s$	$S_{ave} = 0.50 \pm 0.06$	$\sin 2\beta + \Delta S$	CPX
$\mathcal{B}(B \to X_s \bar{\mu} \mu)$	$4.3 \pm 1.2 \cdot 10^{-6}$	$4.3 \pm 0.7 \cdot 10^{-6}$	q^2 -spectra
$a_{CP}(B \to X_s \bar{\ell} \ell)$	-0.22 ± 0.26	-0.2 ± 0.2 %hep-ph/9812267	CPX
$A_{FB}^{CP}(B \to K^* \bar{\ell} \ell)$	—	$\stackrel{<}{_\sim} 10^{-3}$ hep-ph/0006136	CPX in bsZ
$R_K \; \mu \mu \;$ VS. ee	1.06 ± 0.48 BaBarʻ05	$1\!+\!{\cal O}(m_{\mu}^2/m_b^2)$ hep-ph/0310219	non-SM Higgs
$\mathcal{B}(B \to K \nu \bar{\nu})$	$< 3.6\cdot 10^{-5}$ Belle'05	$3.8^{+1.2}_{-0.6}\cdot 10^{-6}$	O(10) from SM
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$< 1.2 \cdot 10^{-7}$	$3.2 \pm 1.5 \cdot 10^{-9}$	O(50) from SM
$\mathcal{B}(B_s \to \tau^+ \tau^-)$	$ $ $< \mathcal{O}(5\%)$	$7.2 \pm 1.1 \cdot 10^{-7}$	$O(10^5)$ from SM
$\mathcal{B}(B_d \to \tau^+ \tau^-)$	$< 3.4\cdot 10^{-3}$ BaBar'05	$2.1 \pm 0.3 \cdot 10^{-8}$	$O(10^5)$ from SM

order 1 NP on $\Delta m_s^{SM} \sim (V_{tb}^* V_{ts})^2 \frac{g^4}{16\pi^2} \frac{(\bar{b}\Gamma s)(\bar{b}\Gamma' s)}{m_W^2}$ implies

	NP from loops	tree level NP
MFV	$\Lambda \gtrsim m_W \sim O(100) \; {\rm GeV}$	$\Lambda \gtrsim 4\pi m_W \sim O(1)$ TeV
non MFV	$\Lambda \stackrel{>}{_\sim} m_W/ V_{ts} \sim O(2-3)$ TeV	$\Lambda \gtrsim 4\pi m_W/ V_{ts} \sim O(30) \text{ TeV}$

origin of flavor is still a mystery whether it is connected to the NP scale Λ we are probing now