Exercise 1: Gravitational Waves (12 Points)

(a) Consider small perturbations $h_{\mu\nu}$ around the Minkowski metric:

$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}.\tag{1}
$$

If the perturbation is rewritten in the form of

$$
\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h^{\rho}_{\rho},
$$
 (2)

the Einstein tensor is given by

$$
G_{\mu\nu} = \frac{1}{2} \left(\partial_{\gamma} \partial_{\nu} \bar{h}_{\mu}^{\gamma} + \partial^{\gamma} \partial_{\mu} \bar{h}_{\nu\gamma} - \partial_{\gamma} \partial^{\gamma} \bar{h}_{\mu\nu} - \eta_{\mu\nu} \partial_{\gamma} \partial^{\delta} \bar{h}_{\delta}^{\gamma} \right). \tag{3}
$$

How do the fields $\bar{h}_{\mu\nu}$ and $h_{\mu\nu}$ transform under coordinate transformations given by small shifts $x^{\mu} \rightarrow x^{\mu} + \epsilon^{\mu}(x)$? Notice the similarity to gauge transformations of the electromagnetic potential *Aµ*.

(b) The harmonic gauge fixing condition reads:

$$
\partial_{\mu}h^{\mu}_{\ \nu} = \frac{1}{2}\partial_{\nu}h^{\rho}_{\rho}.\tag{4}
$$

This condition admits additional gauge transformations which further reduce the number of independent polarizations of the gravitational wave to two. What condition is obeyed by the ϵ_{μ} that corresponds to these residual transformations?

(c) Show that the harmonic gauge fixing condition implies the Lorenz gauge for the field $\bar{h}_{\mu\nu}$, i.e. $\partial^{\mu}\bar{h}_{\mu\nu}$ = 0. Write down the Einstein field equations in vacuum for the field $\bar{h}_{\mu\nu}$ in Lorenz gauge.

A solution of the Einstein equation for $\bar{h}_{\mu\nu}$ in Lorenz gauge is

$$
\bar{h}_{\mu\nu} = \text{Re}\left[\int dk A_{\mu\nu} \exp\left(-ik_{\rho}x^{\rho}\right)\right].\tag{5}
$$

- (d) Due to the Lorenz gauge condition four degrees of freedom of the solution above can be eliminated. Give the condition on the parameters *Aµν* resulting from the Lorenz gauge condition. How many degrees of freedom are left?
- (e) In Lorenz gauge, the gauge functions ϵ_{μ} fulfill a wave equation themselves, i.e. $\partial_{\nu} \partial^{\nu} \epsilon_{\mu} = 0$. This equation is solved by

$$
\epsilon^{\mu} = \text{Re}\left[\int dp C^{\mu} \exp\left(-ip_{\rho}x^{\rho}\right)\right],\tag{6}
$$

with the free parameters C^{μ} . Show explicitly that the coefficients C^{μ} can be chosen in a way that

$$
\bar{h}^{\rho}_{\rho} = 0 \quad \text{and} \quad \bar{h}^{\mu}_0 = 0, \tag{7}
$$

are satisfied. This is called *traceless transverse gauge*. How many degrees of freedom are left?

Exercise 2: Canonical energy momentum tensor (8 Points)

The celebrated theorem by Emmy Noether states that every symmetry of the action implies the conservation law for the corresponding current. Recall that the action for the field theory in 3 + 1 dimensions is given by $S = \int d^4x \mathcal{L}$, where $\mathcal{L}(\phi, \partial_\mu \phi)$ is the Lagrangian density, hereafter called simply the Lagrangian. In particular, a symmetry transformation that leaves the Lagrangian invariant, $\delta \mathcal{L} = 0$, will leave the action invariant as well.

One finds that the variation of the Lagrangian under the infinitesimal variations of the fields and their first derivatives is: $¹$ </sup>

$$
\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi(x)} \delta \phi(x) + \frac{\partial \mathcal{L}}{\partial (\partial \phi(x))} \partial_{\mu} \delta \phi(x).
$$
 (8)

The equation of motion for the field ϕ is derived from the action principle:

$$
\frac{\delta S}{\delta \phi} = 0,\tag{9}
$$

where

$$
\frac{\delta S}{\delta \phi} = \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}.
$$
(10)

Inserting this into Eq.(8) one obtains

$$
\delta \mathcal{L} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) + \frac{\delta S}{\delta \phi} \delta \phi.
$$
 (11)

If the equation of motion is satisfied and the infinitesimal symmetry transformation leaves the Lagrangian invariant, $\delta \mathcal{L} = 0$, there is a conserved current:

$$
\partial_{\mu}j^{\mu} = 0, \text{ where } j^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\delta\phi. \tag{12}
$$

It can happen that the infinitesimal symmetry transformation does not leave Lagrangian invariant but shifts it by a total derivative of a vector, $\delta \mathscr{L} = \partial_{\mu} K^{\mu}$. In this case there is a conserved current

$$
\tilde{j}^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \delta\phi - K^{\mu}.
$$
\n(13)

- (a) As an example, consider the infinitesimal spacetime translations by a constant vector a_{μ} , that is $\phi \rightarrow \phi(x-a)$. What is the corresponding variation of the field ϕ ?
- (b) Under this transformation the variation of the Lagrangian is $\delta \mathcal{L} = -a^{\mu} \partial_{\mu} \mathcal{L}$. Show this explicitly for the case of the free scalar field whose Lagrangian is

$$
\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2}.
$$
 (14)

 1 In what follows we drop the dependence on the coordinates to simplify the notation

(c) We define the *canonical energy-momentum tensor* $S^{\mu\nu}$ in terms of the conserved current that corresponds to spacetime translations:

$$
a_v S^{\mu\nu} = \tilde{j}^\mu. \tag{15}
$$

Write down the form of $S^{\mu\nu}$ in terms of the Lagrangian.

(d) Derive the canonical energy-momentum tensor for the free electromagnetic field using your knowledge of the Lagrangian $\mathscr{L} = -\frac{1}{4}$ $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$. What are the deficiencies of the resulting energy-momentum tensor?