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Exercise 1: Parametrization of geodesics (4 Points)

(a) A curve which parallel-transports its own tangent vector fulfills the condition

uα∇αuµ = 0, (1)

where ~u = d/d s is the vector field tangent to the curve, and s parametrizes the curve
xµ(s). Show that equation (1) implies the geodesic equation.

(b) Show that, if a curve fulfills the equation

uα∇αuµ = c(λ)uµ , (2)

with ~u = d/dλ, one can always find a parameter s(λ) which satisfies c(s) = 0. In this
case, s is called an affine parameter.

(c) In the case of massive particles, extremizing the spacetime interval leads to equa-
tion (1) with ~u = d/dτ. Show that, if τ is an affine parameter, aτ+b is also affine.

Exercise 2: Killing vectors (8 Points)

Killing vector fields, or simply Killing vectors, are in one-to-one correspondence with
continuous symmetries of the metric on a manifold. Such symmetries are called isome-
tries, and their number is equal to the number of linearly independent Killing vectors.
Killing vectors imply the existence of conserved quantities associated with geodesic
motion.
Mathematically, isometries are diffeomorphisms that leave the metric unchanged. This
means that a diffeomorphism f : M → M is an isometry if it preserves the metric

∂yα

∂xµ
∂yβ

∂xν
gαβ( f (p)) = gµν(p) , (3)

where xµ and yµ are the coordinates of p ∈ M and f (p) ∈ M respectively. Isometries form
a group which we study from an infinitesimal point of view.

(a) A vector field ~K = K µ∂µ on M is a Killing vector field if the infinitesimal displace-
ment yµ = xµ+εK µ generates an isometry. Show that this is the case if

Kσ∂σgµν+ gσν∂µKσ+ gµσ∂νKσ = 0. (4)

These are the Killing equations.
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(b) Show that the equations

∇(µKν) = 0, (5)

are equivalent to Eq. (4).

(c) Killing vectors can be used to find geodesics on M . Show that the product ~K ·~u,
where ~u is the vector tangent to a geodesic, is constant along this geodesic.

(d) Show that ∇µ Jµ = 0, where Jµ = TµνK ν and Tµν is a conserved energy-momentum
tensor. Interpret this result.

(e) Consider now the metric of the two sphere M = S2 in local coordinates:

d s2 = dθ2 + sin2θdφ2 . (6)

What is the maximum number of linearly independent Killing vectors one could
in principle find? Derive the Killing vectors for this metric by solving the Killing
equations.

Exercise 3: Geodesic of the Schwarzschild Metric (8 Points)
Consider the Schwarzschild metric, the solution of the Einstein equations for a spherical
mass distribution of mass M . The coordinates can be chosen in such a way that a geodesic
always lies in the plane θ = π

2 . The Schwarzschild metric is given as

d s2 =−
(
1− RS

r

)
d t 2 +

(
1− RS

r

)−1

dr 2 + r 2dθ2 + r 2 sin2θdφ2 , (7)

with RS = 2GM .
Starting from

δ

∫ √
gµν

dxµ

dλ
dxν

dλ
dλ= 0, (8)

the geodesic equation can be obtained in the form of

0 = d

dτ

[
gαβ

d xβ

dτ

]
− 1

2

∂gµν
∂xα

d xµ

dτ

d xν

dτ
. (9)

(a) Determine the geodesic equations for the Schwarzschild metric in case of θ = π
2 by

use of eq. (9).

(b) Show that the quantities

E =
(
1− RS

r

)
d t

dτ
and L = r 2 dφ

dτ
(10)

are conserved by the geodesic equations.

For timelike trajectories we can define dτ2 =−d s2, while d s2 = 0 for lightlike trajectories.

c) Show that

−κ=−
(
1− RS

r

)(
d t

dτ

)2

+
(
1− RS

r

)−1 (
dr

dτ

)2

+ r 2
(

dφ

dτ

)2

, (11)

with κ= 1 for a timelike trajectory and κ= 0 for a lightlike trajectory.
In case of a lightlike trajectory think of the parameter τ as any affine parameter parametrizing
the trajectory.
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d) Using the results of b) and c) verify

E 2 =
(

dr

dτ

)2

+
(
1− RS

r

)(
L2

r 2 +κ
)

. (12)

Now, consider a radial geodesic, i.e. dφ= 0.

e) Solve the geodesic equation for a lightlike trajectory, i.e. give an expression for
t − t0 in terms of r (t ) and r (t0). For which values of τ and t you find r = RS?

f) Determine d 2r
dτ2 for a timelike trajectory. Which familiar result is obtained?

g) Finally, consider the case of an initially escaping massive particle, i.e. a timelike
trajectory with dr

dτ > 0 for τ = τ0. For which values of E the particle can actually
escape, i.e. reach r →∞?
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