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Exercise 1: Robertson–Walker metric and Christoffel symbols (8 Points)

The assumption that the universe is both isotropic and homogeneous led Robertson and
Walker to choose the spacetime coordinate system so that the metric takes a simple form.
This metric is called the Robertson–Walker metric. Here, we first consider the geometry
of a three-dimensional homogeneous and isotropic space. Geometry is encoded in the
metric, or equivalently in the line element d s2. One obvious homogeneous isotropic three
dimensional space is flat space, with line element d s2 = d~x2. The next possibility is the
surface of a 4-sphere with radius a, d s2 = d~x2+d y2 with~x2+y2 = a2. It can be shown that
the only other possibility is a hyperspherical surface, with line element d s2 = d~x2 −d y2

with y2 −~x2 = a2, where a2 is a positive constant.

(a) Determine the line element d s2, which is independent of y , for all three possibilities.
Rescale the coordinates with ~x ′ = a~x and y ′ = ay . Show that the line element takes
the form

d s2 = a2
(
d~x2 +k

(~x ·d~x)2

1−k~x2

)
, k =


+1 spherical
0 flat
−1 hyperspherical

. (1)

(b) Extend the expression in Eq. (1) to the geometry of spacetime by including this
term in the spacetime line element dτ2 = −gµνd xµd xν, with a now an arbitrary
function of time. Introduce spherical coordinates for the spatial coordinates ~x and
determine the components of the metric. Your result should be

g t t =−1, gr r = a2(t )

1−kr 2 , gθθ = a2(t )r 2 , gφφ = a2(t )r 2 sin2(θ) , (2)

and all other components should vanish.

All ways in which curvature manifests itself rely on a connection, Γλµν. There is a unique
connection which can be constructed from the metric, and it is encapsulated in the
Christoffel symbols given by

Γλµν =
1

2
gλσ

(
∂µgνσ+∂νgσµ−∂σgµν

)
. (3)

The fundamental use of a connection is to take a covariant derivative ∇µ (generalization
of partial derivative)

∇µV ν = ∂µV ν+ΓνµσV σ . (4)

One can show that the covariant derivative of a tensor is again a tensor, unlike the partial
derivative.

(c) Compute the Christoffel symbols for the Robertson–Walker metric using Eq. (3).

1



Exercise 2: Geodesics on the earth (8 Points)

Consider a 2-sphere of unit radius with coordinates (θ,ϕ) and metric

d s2 = dθ2 + sin2θdϕ2 . (5)

We are going to study the geodesics on this surface, which correspond to the trajectories
which a free test particle would follow. One can think of the geodesics as the generalisa-
tion in curved space of straight lines in flat space. The geodesics can be found by solving
the so-called geodesic equation. In the past exercise sheet we found out how this equation
looks in flat space. In general, however, the geodesic equation takes the form

d 2xµ

dλ2 +Γµρσ
d xρ

dλ

d xσ

dλ
= 0, (6)

where λ parametrizes the trajectories xµ(λ).

(a) Compute the Christoffel symbols Γµρσ of the metric (5) using eq. (3).

(b) Show that lines of constant longitude (ϕ= constant) are geodesics, and that the line
of constant latitude θ = π/2 is also a geodesic, by showing that these trajectories fulfil
equation (6). Note that in the first case you can take λ= θ, while in the second λ=ϕ.

(c) In the Christoffel connection, a geodesic can also be defined as a path which parallel
transports its own tangent vector. Parallel transport is a given way of moving a vector
through curved space while keeping it constant. More precisely, the vector is transported
in such a way that the covariant derivative along the direction of transport vanishes, eg.

vµ∇µaν = 0, (7)

where aν is the vector we transport along the direction of vµ.

Take a vector with components aν = (1,0) at θ = θ0,ϕ= 0 and parallel transport it once
around the circle of constant latitude θ = θ0. In order to do this, solve the equations of
motion you obtain from (7) for the components of a as a function of θ0. Are lines of
constant latitude, in general, geodesics?

(d) What is the modulus of a after the transport?

Exercise 3: Cosmological Redshift (4 Points)

The line element of the Robertson-Walker metric is given by

d s2 =−d t 2 +a2 (t )

[
dr 2

1−kr 2 + r 2dθ2 + r 2 sin(θ)dφ2
]

, (8)

where a (t ) is the scale factor describing the expansion of the universe.
Due to this expansion, a light signal that is emitted with wavelength λ1 at time t = t1 will
be observed with a different wavelength λ0 at time t = t0. The emitted and the observed
wavelength are related by the cosmological redshift z

1+ z = λ0

λ1
= a (t0)

a (t1)
. (9)
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A similar expression can be found for the momenta of massive particles. To see that,
consider the geodesic equation written in terms of the four velocity uµ:

duµ

dτ
+Γµνρuνuρ = 0. (10)

a) Give the µ = 0 component of the geodesic equation. You should have found in
exercise 1 that the only non-vanishing component of Γ0

νρ is Γ0
i j = ȧ(t )

a(t ) gi j .

b) Next, show that

du0 = |~u|
u0 d |~u| , (11)

with |~u| = gi j ui u j .
Then, recalling that u0 = d t

dτ , verify that the geodesic equation implies |~u| ∼ a−1 (t ) .
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