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Exercise 1: Natural units (2 Points)
As you have seen in the lecture, natural units are defined by setting c =ħ= 1. Use natural
units to express 1kg, 1s and 1m in powers of GeV. Use your results to express Newton’s
constant

GN = 6.674×10−11 m3

kgs2 (1)

in natural units.

Exercise 2: Basics of Minkowski space (6 Points)
In special relativity time and euclidian three-dimensional space are unified in a four-
dimensional vector space called Minkowski space. Spacetime events are described by
contravariant 4-vectors

(
xµ

)=


x0

x1

x2

x3

=
(
ct
~x

)
=

(
t
~x

)
, (2)

where t is the time coordinate, ~x is the position vector and c = 1 denotes the speed of
light.
Additionally, covariant 4-vectors are defined as

xµ =
∑
ν
ηµνxν ≡ ηµνxν where ηµν =


−1, µ= ν= 0
+1, µ= ν= 1,2,3

0, otherwise
. (3)

We employ the Einstein summation convention: Whenever an index appears twice, sum-
mation over this index is implied.
The tensor ηµν is the metric of Minkowski space; it can be used to map contravariant
vectors onto covariant vectors and vice versa (it “lowers” and “raises” indices). Its inverse
ηµν is defined by ηµνηνρ = δ ρ

µ .

(a) Calculate or simplify (explicitly in terms of the components x0, x1, x2, x3) the fol-
lowing expressions:
(i) xν = ηµνxµ

(ii) ηλ
λ
= ηµνηµν

(iii) ηαβηγβ

(iv) ηµνxνxµ

(v) ηµαxσησαxµ

(b) The scalar product of two 4-vectors xµ and yµ is given by the expression xµyµ. Linear
transformations Λµ

′
µ that map 4-vectors onto a new set of coordinates (labeled by

µ′) and leave the scalar product xµyµ invariant are called Lorentz transformations.
Contravariant 4-vectors transform according to

xµ
′ =Λµ′

νxν. (4)
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Derive the respective transformation law for covariant 4-vectors. How does the
derivative ∂µ ≡ ∂

∂xµ transform? (Hint: Chain rule)

Exercise 3: Tensor properties (6 Points)
Let Sµν = Sνµ be a symmetric tensor; Aµν = −Aνµ an antisymmetric one. Let Tµν be
an additional arbitrary tensor of rank 2. Arbitrary tensors Tµ1µ2...µn of rank n can be
symmetrized or antisymmetrized according to

T(µ1µ2...µn ) := 1

n!

∑
P

Tµ1µ2...µn (5)

and

T[µ1µ2...µn ] := 1

n!

∑
P

sgn(P )Tµ1µ2...µn , (6)

respectively. Here, P denotes the permutations of the indices µi and sgn(P ) is the sign of

the permutation, defined by sgn(P ) =
{ +1, if the number of permutations in P is even

−1, if the number of permutations in P is odd .

(a) Show explicitly:

SµνT µν = SµνT (µν), AµνT µν = AµνT [µν], SµνAµν = 0. (7)

(b) Show that an arbitrary rank-2 tensor can be decomposed into a symmetric and an
antisymmetric part:

Tµν = T(µν) +T[µν]. (8)

Can this also be done for tensors of rank n > 2? Provide a proof or a counterexample.

(c) Show that in general
T µ

ν 6= T µ
ν . (9)

Exercise 4: Lagrangian formalism and Maxwell’s equations (6 Points)
The lagrangian density of the free electromagnetic field is given by

L =−1

4
FµνFµν (10)

where the electromagnetic field tensor is defined in terms of electromagnetic four-
potential (Aµ) = (φ,~A)T as Fµν = ∂µAν−∂νAµ. The Euler-Lagrange (EL) equations follow
from the minimum action principle which states that the action, defined as S = ∫

d 4xL

is stationary, that is
δS = 0, (11)

and are given as:
∂L

∂Aν
−∂µ ∂L

∂(∂µAν)
= 0. (12)

(a) Using the EL equations derive the equations of motion for the electromagnetic
potential Aµ.

2



(b) Write down the resulting equations in terms of the electric and magnetic fields
which are components of Fµν, that is

F 0i = E i , F i j = εi j k Bk , (13)

where indices i , j refer to the corresponding spatial components, i , j = 1,2,3 and
εi j k is totally antisymmetric tensor with respect to exchanges of any two indices
(Levi-Civita tensor), with the convention ε123 = 1.

(c) Show that in the Lorentz gauge the equations of motion derived in (a) reduce to
the wave equation.
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