<http://people.het.physik.tu-dortmund.de/~ghiller/WS1920ETT.html>

Exercise 1: Adjoint representation of *SU*(*N*) **(8 Points)**

The generators T^a of the group $SU(N)$ are hermitian operators which construct all infinitesimal group transformations. The commutator of two generators can be written as a linear combination

$$
\left[T^a, T^b\right] = \mathrm{i} f^{abc} T^c \,,\tag{1.1}
$$

where f^{abc} are structure constants. The commutator relation [\(1.1\)](#page-0-0) and the vector space spanned by the generators are called the *Lie algebra* of the corresponding Lie group *SU*(*N*).

(a) Derive the *Jacobi identity*

$$
\left[T^{a},\left[T^{b},T^{c}\right]\right]+\left[T^{b},\left[T^{c},T^{a}\right]\right]+\left[T^{c},\left[T^{a},T^{b}\right]\right]=0
$$
\n(1.2)

using the following relation

$$
f^{ade} f^{bcd} + f^{bde} f^{cad} + f^{cde} f^{abd} = 0.
$$
 (1.3)

(b) For every simple Lie algebra an adjoint representation can be defined. The corresponding generators can be written as

$$
\left(t^b\right)_{ac} = \mathrm{i} f^{abc} \,. \tag{1.4}
$$

Show that these generators satisfy the Lie algebra

$$
\left(\left[t^{a}, t^{c}\right]\right)_{be} = \mathrm{i} f^{acd} \left(t^{d}\right)_{be}.\tag{1.5}
$$

Use Eq. [\(1.3\)](#page-0-1) and keep in mind that the structure constants are anti-symmetric in the first two indices, i.e. $f^{abc} = -f^{bac}$.

(c) The quadratic Casimir invariant of a representation *R* is defined as

$$
C(R)\mathbb{1} = \sum_{a} \left(t^{a} t^{a}\right),\tag{1.6}
$$

where t^A denotes the generators of the gauge group in a representation R. The Dynkin index of a representation *R* reads

$$
S(R)\,\delta^{ab} = \text{Tr}\left(t^a\,t^b\right). \tag{1.7}
$$

Show that for the adjoint representation of the *SU*(3) the following relation holds

$$
C(\text{adj}) = S(\text{adj}) = 3,\tag{1.8}
$$

taking into consideration the non-vanishing *SU*(3) structure constants

$$
f^{123} = 1, f^{147} = -f^{156} = f^{246} = f^{257} = f^{345} = -f^{367} = \frac{1}{2}, f^{458} = f^{678} = \frac{\sqrt{3}}{2}.
$$
 (1.9)

Exercise 2: Parton distribution functions (6 Points)

- a) On the website http://hepdata.cedar.ac.uk/pdf/pdf3.html you can find the parton distribution functions $xf(x,Q^2)$ as a function of the Bjorken variable *x*. Use the data of the (G)JR group, set JR09FFnnlo, and plot the parton distribution functions of the quarks and gluons with $Q^2 \in \{0.1, 1, 10\}$ GeV². Interpret the plots.
- b) Sum rules can be derived for the parton distribution functions. From the definition of the total momentum of the proton one finds

$$
\int_0^1 x \sum_i f_i(x) = 1.
$$
 (2.1)

Consider the distribution functions $u_v(x)$, $d_v(x)$, $s(x)$, $\bar{s}(x)$ and $g(x)$, where the index *v* denotes the valence quarks and non-indexed quarks are virtual sea quarks. What are the sum rules of the electric charge $Q = +1$ and the vanishing strangeness *S* = 0 of the proton?

Exercise 3: Isospin rotations for quarks and antiquarks (6 Points)

The up- and down-quark fields can be written as SU(2)-Isospin doublets $q = (u, d)^T$, where for a general isospin doublet $(q_1, q_2)^T$ the components q_1 and q_2 fulfil $I_3(q_1) = 1/2$ and $I_3(q_2) = -1/2$. Here I_3 denotes the third component of the isospin. In the following we want to investigate the transformation of such a doublet under a rotation*U* in isospin space. The rotation is given by

$$
q' = Uq \quad \text{with} \quad U = \exp(i\vec{\phi}\vec{\tau}), \tag{3.1}
$$

with angles ϕ_i and rotation generators $\tau_i = \sigma_i/2$, where σ_i are the Pauli matrices.

- a) Calculate *U* and $q' = Uq$ for a rotation around $\phi = (0, \pi, 0)^T$.
- b) Consider now the antiquark doublet. The antiquarks belong to the so-called conjugate representation of SU(2), so that for the isospin part of the fields the relations $\overline{u} = u^*$ and $\overline{d} = d^*$ apply (the quotation marks indicate that the relations are not valid for the entire fields, but only for their respective isospin part). Because of the Gell-Mann-Nishijima relation, $I_3(\bar{u}) = -I_3(u)$ and $I_3(\bar{d}) = -I_3(d)$ hold as well. Therefore, the ansatz $q = (a\bar{d}, b\bar{u})^T$ may be used for complex numbers a, b with $|a| = |b| = 1$. Proceed as follows: Conjugate equation [\(3.1\)](#page-1-0) and express the result using this ansatz for the antiquark doublets. How should you choose *a* and *b* so that the antiquark doublet is actually a doublet, that is, $\bar{q}' = U\bar{q}$ is fulfilled?

Note: Use your result from subtask a) to determine the coefficients.