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Exercise 1: Extended QED: Everything that’s (not) allowed (7 Points)

The QED Lagrangian, which describes photons, charged spin-1/2 fermions and their
interaction via electromagnetism, is given by

LQED =−1

4
FµνFµν+ ψ̄ (i /D −m)ψ , (1.1)

where Dµ = ∂µ− ie Aµ is the covariant derivative. We now try to add additional terms to
the Lorentz-invariant QED Lagrangian

LQED →LQED+L1 , (1.2)

L1 =−1

4
FµνF̃µν+ 1

2
m2 AµAµ+ 1

2λ

(
∂µAµ

)2 + ψ̄σµνψFµν+ ψ̄ψFµνFµν− AµFµνAν , (1.3)

where F̃µν = 1
2ε

µναβFαβ and m,λ are constants.

(a) The extended Lagrangian in Eq. (1.2) needs to fulfillU (1)-gauge invariance. Which
terms in Eq. (1.3) violate this invariance? Such terms must not appear in the fun-
damental Lagrangian!

(b) Themost powerful tool to restrict new or additional terms is renormalization, which
forbids all terms with mass dimension d > 4 in a quantum field theory in 3+ 1
Minkowski space.
Employ Eq. (1.1) to calculate the canonical mass dimensions of the fieldsψ, Aµ and
identify the non-renormalizable terms in Eq. (1.3).
Hint: The action S = ∫

d4xL (x) hasmass dimension [S] = 0. As themass dimension
of a length is inverse proportional to a mass, we can infer

[
d4x

] = −4 as well as
[L (x)] =+4 and

[
Dµ

]=+1.

(c) The first term in Eq. (1.3) fulfils every requirement from (a) and (b). However, is
must not appear in Eq. (1.1)! Why is that? Which exact symmetry (in QED) is
broken in that case?

(d) Find an expression K µ which obeys the following relation:

Fµν F̃µν = ∂µK µ . (1.4)

Why can one neglect such a term Fµν F̃µν in the Lagrangian?

(e) Why does the last term in Eq. (1.3), AµFµνAν, vanish?
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Exercise 2: Feynman rules (7 Points)

Consider the following Lagrangian density involving a real scalar field Φ and a Dirac
field ψ:

L = 1

2
∂µΦ∂

µΦ − 1

2
M 2Φ2 + ψ̄(iγµ∂µ−m)ψ − i g (ψ̄γ5ψ)Φ , (2.1)

where M and m are the masses of Φ and ψ, respectively, and g is a coupling constant.

(a) Show the following contractions:

a~p,σψ(x) ≡ {
a~p,σ,ψ(x)

}= 1√
2Ep

uσ(~p)e i px , (2.2)

b~p,σψ(x) ≡ {
b~p,σ,ψ(x)

}= 1√
2Ep

vσ(~p)e i px , (2.3)

Φ(x)a†
Φ,~p ≡

[
Φ(x), a†

Φ,~p

]
= 1√

2Ep
e−i px . (2.4)

(b) Determine the Feynman rule in momentum space for the vertex ψ̄ψΦ. Consider
the decay of Φ(~p1) →ψ(~p2)ψ̄(~p2) and use the Wick theorem to compute

< ~p2~p3|S − I |~p1 >= i
∫
d4x < ~p2~p3|N [− i g (ψ̄γ5ψ)Φ]|~p1 > , (2.5)

where N [...] is the normal ordered product, defined in Ex. 1 on the last sheet.

Exercise 3: Feynman diagrams playground (6 Points)

In this exercise we introduce diagrammatic notations similar to the famous Feynman
rules. The individual parts of the diagram are depicted and described as follows.

vertex: µ

a

b

≡ γµab (3.1)

propagators:

µ ν ≡ gµν

a b ≡ 1ab

(3.2)

(Note that these Feynman rules are constructed as an exercise and do not represent the
true Feynman rules.) Here, a,b and µ,ν denote Spinor and Lorentz indices, respectively.
A full diagram is constructed by these individual parts as follows. The parts are glued
together by summing over the indices of the interfaces (vertices). Vertices can only be
connected to propagators and vice versa. Thus, we can construct diagrams, which then
can be translated into mathematical expressions. As an example, consider the following
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formal diagrams which can be translated as

µ

a

b

≡ ∑
a,b

1ab γ
µ

ba = Tr
(
γµ

)
, (3.3)

µ ν

a

b

a′

b′

≡∑
µ,ν
γ
µ

ba γ
ν
b′a′gµν = γµbaγµ,b′a′ . (3.4)

(3.5)

Here, we follow lines in the opposite direction to the arrows.
Use this notation and compute the following diagrams:

(3.6)
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