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Exercise 1: Wick’s theorem (5 Points)

Prove Wick’s theorem for two fermionic fields, i.e. show that

T {ψ(x)ψ(y)} = N {ψ(x)ψ(y)}+ψ(x)ψ(y) , (1.1)

with the contraction of two fermionic fields

ψ(x)ψ(y) =
{

{ψ+(x),ψ−(y)} for x0 > y0

−{ψ+(y),ψ−(x)} for y0 > x0
. (1.2)

Hints:
For two scalar fields the corresponding relation betweennormal-ordered and time-ordered
product reads

T {φ(x)φ(y)} = N {φ(x)φ(y)}+φ(x)φ(y) , (1.3)

where φ(x) =φ+(x)+φ−(x) is the contraction defined as

φ(x)φ(y) =
{

[φ+(x),φ−(y)] for x0 > y0

[φ+(y),φ−(x)] for y0 > x0
. (1.4)

In the normal-ordered product N {...} all annihilation operators are moved to the right of
all creation operators, e.g.

N {ak a†
p aq } = a†

p ak aq . (1.5)

In order to formulate Wick’s theorem for fermionic fields, the time-ordered and normal-
ordered product need to be generalized for fermions. The time-ordered product obtains
a minus sign for each commutation of operators

T {ψ(x)ψ(y)} =
{
ψ(x)ψ(y) for x0 > y0

−ψ(y)ψ(x) for y0 > x0
. (1.6)

The same is true for the normal-ordered product. For example

N {ak aq a†
p } = (−1)2a†

p ak aq . (1.7)

Becauseψ+ | 0〉 = 0 and 〈0 |ψ− = 0, it is appropriate to separate into positive and negative
frequencies:

ψ(x) =
∫

d 3p

(2π)3

1√
2Ep

∑
s

[ap,sus(p)e−i px︸ ︷︷ ︸
∝ψ+(x)

+b†
p,s vs(p)e i px︸ ︷︷ ︸

∝ψ−(x)

], (1.8)

ψ(x) =
∫

d 3p

(2π)3

1√
2Ep

∑
s

[bp,s v s(p)e−i px︸ ︷︷ ︸
∝ψ

+(x)

+a†
p,sus(p)e i px︸ ︷︷ ︸

∝ψ
−(x)

]. (1.9)
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Exercise 2: Helicity of the photon (5 Points)
The helicity of a photon H is defined as the projection of the angular momentum vector
~J of the photon on the direction of its momentum~k:

H =~J ·
~k

|~k|
. (2.1)

Construct the polarization vectors εµ of the photon so that

H εµ = h εµ , ε∗µε
µ =−1. (2.2)

The angular momentum operator for four vectors is given by

~J =


0 0 0 0
0

0 ~̃J
0

 , (2.3)

with

~̃J = ( J̃1, J̃2, J̃3) , (2.4)

The generators of rotations in the adjoint representation are defined by (a, b, c ∈ {1, 2, 3})

( J̃a)bc =−iεabc . (2.5)

The polarization vectors are eigenvectors of the helicity operator H of a photon, which
is moving in z-direction with four momentum kµ = (E , 0, 0, E).

Exercise 3: Proca Lagrangian (5 Points)
A theory with a massive vector field is described by the Proca Lagrangian

L =−1

4
FµνFµν+ 1

2
M 2 AµAµ− Aµ jµ . (3.1)

Prove that the corresponding propagator in momentum space is given by

Dµν(k) = i

k2 −M 2

(
−gµν+ kµkν

M 2

)
(3.2)

To do so perform the following steps:

(a) Calculate the equations of motion (EOM) for the vector field Aµ.

(b) Compute the propagator by replacing the inhomogeneous part of the EOM by
igµνδ(4)(x). Besides the factor i, the propagator is the Greens function of the EOM.
You can solve this equation by Fourier transforming and using the ansatz

Dµν(k) = akµkν+bgµν , (3.3)

where a and b are constants you need to find. This ansatz is the most general form
of a tensor of rank two, that only depends on k.
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Exercise 4: QED Lagrangian (5 Points)
The QED Lagrangian LQED reads

LQED =ψ(x)(i∂µγµ−m)ψ(x)−eψ(x)Aµγµψ(x)− 1

4
FµνFµν , (4.1)

where ψ is the fermion filed, ψ̄=ψ†γ0, Aµ is the covariant four-potential of the electro-
magnetic field and Fµν = ∂µAν−∂νAµ is the field strenght tensor.

(a) Show that LQED is invariant under a local U (1) gauge transformation

ψ(x) → exp(iα(x))ψ(x) , (4.2)

Aµ(x) → Aµ(x)− 1

e
∂µα(x) . (4.3)

(b) On the last sheet you have shown that the transformation

L (φ) →L ′(φ) =L (φ)+∂µ fµ(φ(x)) (4.4)

with an arbitrary four-current fµ does not change the physics of φ(x), where φ is
an arbitrary field. Find a function fµ(ψ,ψ̄) that symmetrizes the Lagrangian in Eq.
(4.1) in ψ and ψ̄, i.e.

LQED →L ′
QED =1

2
ψ(x)i∂µγµψ(x)− 1

2

(
∂µψ(x)

)
iγµψ(x)−mψ(x)ψ(x)

−eψ(x)Aµγµψ(x)− 1

4
FµνFµν .

(4.5)

Calculate the equations of motion (EOM) for ψ, ψ̄ and Aµ. Why can ψ and ψ̄ be
varied independently?

(c) The Noether theorem implies a conservation law for any differentiable symmetry
of the action. Show that U (1) invariance implies charge conservation. To do so,
first show that the Noether current jµ = eψ(x)γµψ(x) is conserved.
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