<http://people.het.physik.tu-dortmund.de/~ghiller/WS1920ETT.html>

Exercise 1: Optical theorem (5 Points)

Check the validity of the optical theorem in the special case of the scattering of two spinless particles interacting with each other via a central potential $V(r) = V(|r|)$. The scattering cross section can be represented as a sum over partial waves:

$$
\frac{d\sigma}{d\Omega} = |f(k,\theta)|^2 \,,\tag{1}
$$

$$
f(k,\theta) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \left(\frac{e^{2i\delta_l} - 1}{2i} \right) P_l(\cos\theta), \tag{2}
$$

where

- *k* is the absolute value of the particle's momentum in the center of mass system,
- θ is the scattering angle,
- *P^l* (*x*) is the *l*-th Legendre polynomial (due to the azimuthal symmetry only the waves with L_z eigenvalues $m = 0$ contribute),
- $\delta_l = \delta_l(k)$ is the scattering phase shift.

The optical theorem is:

$$
\sigma_{\text{tot}}(k) = \frac{4\pi}{k} \text{Im} f(k, \theta = 0). \tag{3}
$$

Exercise 2: Lorentz invariance violation (5 Points)

In this exercise, Lorentz invariance violating contributions are examined. Such contributions could for example stem from a yet unknown quantum gravity theory due to a discrete space-time structure, as assumed in some models at the Planck scale $M = 10^{19}$ GeV. Violation of Lorentz invariance could lead to modified dispersion relations. In the case of the photon such a relation could take the following form in the lowest order:

$$
E_{\gamma}^{2} = k^{2} + \epsilon k^{2} + \frac{\xi}{M}k^{3},
$$
\n(4)

where *k* denotes the absolute value of the three momentum of the photon, E_y is the photon energy and ϵ , ξ are dimensionless parameters.

- (a) What are the conventional vacuum dispersion relations for photons or electrons and positrons? Show that the altered relation in Eq. [\(4\)](#page-0-0) violates Lorentz invariance.
- (b) Compute the photon group velocity using the dispersion relation in Eq. [\(4\)](#page-0-0) up to first order in *k*/*M*.

(c) Consider the decay of a photon in an electron-positron-pair, $\gamma \rightarrow e^+e^-$. Examine the case ϵ > 0, ξ < 0. Start from energy conservation and show, under the assumption $|\vec{p}_+| = |\vec{p}_-|$, the relation

$$
\epsilon k^2 + \frac{\xi}{M} k^3 \ge 4m_e^2,\tag{5}
$$

where m_e denotes the electron mass.

- (d) In the case $\xi = -1$, for which value of ϵ is the decay possible?
- (e) Show that in general (as long as the decay is possible) there exists not only a lower bound on *k*, but also an upper bound, so that the decay is only possible in a certain momentum range.

Exercise 3: Phase space three body decay (10 Points)

(a) Simplify the phase space integral of a matrix element M for a three body decay $a \rightarrow 1+2+3$:

$$
R_3(|\mathcal{M}|^2) = \int \int \int \frac{\mathrm{d}^3 p_1}{2E_1} \frac{\mathrm{d}^3 p_2}{2E_2} \frac{\mathrm{d}^3 p_3}{2E_3} \delta^4 (p_a^\mu - p_1^\mu - p_2^\mu - p_3^\mu) |\mathcal{M}|^2. \tag{6}
$$

Instruction:

• Use the relation

$$
\delta(f(x)) = \sum_{i} \frac{1}{|f'(x_{0i})|} \delta(x - x_{0i}), \qquad (7)
$$

which holds for functions *f* with finitely many simple roots *x*0*ⁱ* , to show that

$$
\int \frac{d^3 p}{2E_p} = \int d^4 p \delta((p^0)^2 - |\vec{p}|^2 - m^2) \Theta(p^0).
$$
 (8)

- Use equation [\(8\)](#page-1-0) to perform the d^3p_3 -integration in the rest frame of particle *a*.
- Simplify the *δ*-function. The final result should have the form

$$
R_3(|\mathcal{M}|^2) = \int \int \frac{\mathrm{d}^3 p_1^*}{2E_1} \frac{\mathrm{d}^3 p_2^*}{2E_2} \theta(p^0) \delta(p^\mu p_\mu - m_3^2) |\mathcal{M}|^2 \tag{9}
$$

with $p^{\mu} = p^{\mu}_a - p^{\mu}_1 - p^{\mu}_2$ $\frac{\mu}{2}$. The star (*) denotes variables in the rest frame of particle *a*.

(b) Now consider the decay $\mu^- \to e^- \nu_\mu \bar{\nu}_e$. You can neglect the masses of the decay products in the following. Decompose the differentials as $\frac{d^3p}{F}$ $\frac{d^3p}{E_p} = E_p dE_p dΩ$. Figure out the relative position of the \vec{p}_i^* with respect to each other in order to perform the solid angle integration.